6
Alexander P. Grechukhin
Kostroma State University
Amirhamza T. Khabibulloev
Kostroma State University
Begidzhon E. Begnazarov
Kostroma State University
Maksim D. Rudkovskiy
Kostroma State University
Comparative modelling of the destruction of a soft armour barrier using two- and threedimensional textile materials based on orthogonal fabrics
Grechukhin A. P., Khabibulloev A. T., Begnazarov B. E., Rudkovskiy M. D. Comparative modelling of the destruction of a soft armour barrier using two- and threedimensional textile materials based on orthogonal fabrics. Technologies & Quality. 2021. No 4(54). P. 37–42. (In Russ.) https: doi 10.34216/2587-6147-2021-4-54-37-42.
DOI: 10.34216/2587-6147-2021-4-54-37-42
УДК: 677. 024.1
Publish date: 2021-11-18
Annotation: The article suggests an approach to virtual testing of textile materials for high-speed penetration. The comparison of two materials developed using different technologies – 3D orthogonal fabric and a package of plain weave fabric is carried out. For this purpose, such parameters of fabrics are selected so that the surface density is identical, the number of layers is the same, the linear density of the threads would be the same. The material of the threads is aramid fibre. In general, according to the assessment along the warp and weft, the lesion area for 3D orthogonal tissue is higher by up to 30 %. At the same time, 31.7 % more kinetic energy of the bullet was extinguished.
Keywords: three-dimensional textile, orthogonal fabric, modelling of fabric destruction, armour-protective material, aramid thread, surface density, bullet kinetic energy
Literature list: 1. Donetski K. I., Raskytin A. E., Hilov P. A., Lykianenko Yu. V., Belinis P. G., Korotigin A. A. Braiding and woven textile preform es for the manufacturing fiber reinforced plastics (review). Trudy VIAM [Works of VIAM]. 2015;9:75–83. (In Russ.) 2. Bilisik K., Karaduman N. S., Bilisik N. E. 3D fabrics for technical textile applications. Non-woven Fab-rics. London : IntechOpen Limited, 2016. P. 81–141. 3. Xiwen Jia, Baozhong Sun, Bohong Gu. Ballistic penetration of conically cylindrical steel projectile into 3D orthogonal woven composite: a finite element study at microstructure level. Journal of Composite Ma-terials 2010;45(9):965–987. 4. Mishra R., Behera B. K., Militky J. Impact simulation of three-dimensional woven kevlar-epoxy compos-ites // Journal of industrial textiles. 2016;45:978–994. 5. Risicato J.-V., Legrand X., Soulat D., Koncars V. Innovative geometrical pre-mesh modeling strategy for 3D fibre preform manufacturing. Journal of industrial textiles. 2014;44:447–462. 6. Pibo Ma, ZheGao. A review on the impact tension behaviors of textile structural composites // Journal of industrial textiles. 2013;44:572–604. 7. Xiwen J., Baozhong S., Bohong G. Numerical Simulation on Ballistic Penetration Damage of 3D Or-thogonal Woven Fabric at Microstructure Level // International Journal of Damage Mechanics. 2012;21:237–266. 8. Baucom J. N., Zikry M. A. Evolution of Failure Mechanisms in 2D and 3D Woven Composite Systems Under Quasi-static Perforation // Journal of Composite Materials. 2005;39:851–863. 9. Grechukhin A. P., Ushakov S. N., Zajczev D. V., Tikhomirov L. A. Sposob formirovaniya 3D-ortogonal`nogo tkanogovoloknistogomateriala // Izvestiya Vysshikh Uchebnykh Zavedenii. Seriya Teknologiya Tekstil'noi Promyshlennosti [Textile Industry Technology (Series Proceedings of Higher Educational Institutions)]. 2016;6:118–122. (In Russ.) 10. Patent RU 2643659 C1. Method for forming three-dimensional orthogonal fabrics. Grechukhin A. P. and others. Opubl. 02.02.2018. (In Russ.) 11. KudryavtsevO. A., SapozhnikovS. B. Yarn-level modelling of woven and unidirectional thermoplastic composite materials under ballistic impact. PNRPU Mechanics Bulletin. 2016;3:108–119. 12. Yang C., Tran P., Ngo T., Mendis P., Humphries W. Effect of textile architecture on energy absorption of woven fabrics subjected to ballistic impact. Applied Mechanics and Materials. 2014;553:757–762. 13. Lee B., Kim C.-G. Computational analysis of shear thickening fluid impregnated fabrics subjected to bal-listic impacts. Advanced composite materials. 2012;21:177–192. 14. LS-DYNA keyword user’s manual. Vol. 1. Livermore, Livermore Software Technology Corporation. 2018. 3186 p. 15. LS-DYNA keyword user’s manual. Vol. 2. Material models. – Livermore, Livermore Software Technol-ogy Corporation. 2018. 1619 p. 16. LS-DYNA keyword user’s manual. Vol. 3. Multi physics solver. Livermore, Livermore Software Tech-nology Corporation. 2018. 351 p. 17. LS-DYNA Theory Manual.– Livermore, Livermore Software Technology Corporation. 2019. 886 p. 18. Kaw Autar K. Mechanics of composite materials. Boca Raton, Taylor and Francis Group. 2006. 474 p. 19. GOST 34282–2017. Zashhita bronevaya avtomobilej. Obshhie tekhnicheskie trebovaniya [State Standart 34282–2017. Armored car protection. General technical requirements]. Moscow, Izd-vo standartov Publ., 2017. 15 p. 20. Rosoboronexport. URL: https://roe.ru/catalog/sukhoputnye-vosyka/strelkovoe-oruzhie/boepripasy-k-strelkovomu-oruzhiyu/7n21 (date of access: 10.07.2021).
Author's info: Alexander P. Grechukhin, Kostroma State University, Kostroma, Russia, niskstu@yandex.ru, https://orcid.org/0000-0002-7732-3583
Co-author's info: Amirhamza T. Khabibulloev, Kostroma State University, Kostroma, Russia, keepsabr007@gmail.com; https://orcid.org/0000-0002-2991-6165
Co-author's info: Begidzhon E. Begnazarov, Kostroma State University, Kostroma, Russia, begnazarov96@bk.ru; https://orcid.org/0000-0002-6649-618X
Co-author's info: Maksim D. Rudkovskiy, Kostroma State University, Kostroma, Russia, rydkoff@yandex.ru; https://orcid.org/0000-0002-1896-3804