DOI 10.34216/2587-6147-2020-1-47-15-21

05.19.01 Материаловедение производств текстильной и легкой промышленности УДК 677.022.2:519.876.5:519.248:004.942 Севостьянов Петр Алексеевич доктор технических наук, профессор Российский государственный университет им. А. Н. Косыгина (Технологии. Дизайн. Искусство), Москва, Россия petrsev46@yandex.ru

ИССЛЕДОВАНИЕ НЕРОВНОТЫ ОДНОМЕРНЫХ ВОЛОКНИСТЫХ ПРОДУКТОВ ПО ДОЛЕ КОМПОНЕНТОВ И ЕЕ ЗАВИСИМОСТИ ОТ НЕРОВНОТЫ ПО ЛИНЕЙНОЙ ПЛОТНОСТИ

В статье приведены результаты исследования взаимосвязи между неровнотой по линейной плотности и по доле компонентов одномерных волокнистых продуктов (ленты, жгута, ровницы, пряжи). Получена формула для оценки коэффициента вариации по доле компонента в зависимости от неровноты по линейной плотности и средней доле компонента. Оценка позволяет прогнозировать ожидаемую неравномерность доли компонента в продукте по известной информации о неровноте компонентов. Установлены закономерности и приведены примеры зависимости между корреляционными функциями и спектральными плотностями дисперсии для неровноты по линейной плотности и доле компонента в продукте в зависимости от доли компонентов, их неравномерности и спектрального состава неровноты.

Ключевые слова: одномерный продукт, лента, неровнота, линейная плотность, доля компонента, дисперсия, коэффициент вариации, автокорреляционная функция, спектральная плотность дисперсии.

Ряд продуктов прядильных производств (лента, ровница, пряжа, нити, жгуты и др.) относятся к категории одномерных продуктов, поскольку их длина на много порядков превосходит поперечные размеры. Неравномерность продуктов по линейной плотности описывают случайными функциями, для исследования которых разработаны измерительные приборы и методы обработки данных [1-3]. По многим причинам эти продукты формируют из смесей различных компонентов [2, 4]. Доля компонентов вдоль продукта так же не постоянна и описывается случайными функциями. Однако надежных и адекватных измерительных средств для прямого измерения доли компонентов по длине продукта до сих пор создать не удалось [4-7]. Поэтому важно найти взаимосвязь между неровнотой продукта по линейной плотности и по долям компонентов. Далее ограничимся двухкомпонентными смесями [3, 8].

Обозначим $g_1(t)$ и $g_2(t)$ случайные функции, описывающие линейную плотность каждого из двух складываемых в продукте компонентов. Линейная плотность продукта в результате сложения компонентов равна $g(t) = g_1(t) + g_2(t)$. Доля 1-го компонента в продукте описывается

$$\begin{split} \delta p_1 &= \frac{(g_1(t) + g_2(t)) \cdot \delta g_1(t) - g_1(t) \cdot \delta (g_1(t) + g_2(t)))}{(g_1(t) + g_2(t))^2} = \\ &= \frac{g_2(t) \cdot \delta g_1(t) - g_1(t) \cdot \delta g_2(t)}{(g_1(t) + g_2(t))^2}, \end{split}$$

$$Dp_{1}(t) = \frac{g_{2}^{2}(t)Dg_{1}(t) + g_{1}^{2}(t)Dg_{2}(t)}{(g_{1}(t) + g_{2}(t))^{4}} = pm_{1}^{2}pm_{2}^{2}(CVg_{1}^{2} + CVg_{2}^{2}).$$
(1)

Здесь *pm*₁ и *pm*₂ – средние доли по линейной плотности компонентов в продукте. Разделим это равенство на квадрат средней (неварьированной) доли и найдем квадрат коэффициента вариации доли 1-го компонента. После преобразований получим

$$CVp_1 = pm_2\sqrt{CVg_1^2 + CVg_2^2}$$
 (2)

случайной функцией $p_1(t) = g_1(t)/g(t)$. Чтобы найти взаимосвязь между коэффициентами вариации по линейной плотности и по доле компонентов, проварьируем выражение для доли компонента и вычислим дисперсию вариации доли:

[©] Севостьянов П. А., 2020

Обмен индексов дает, в силу симметрии, аналогичное выражение для коэффициента вариации *CVp*₂:

 $CVp_2 = pm_1\sqrt{CVg_1^2 + CVg_2^2} \ .$

Из формул следует, что дисперсия доли 1-го и 2-го компонентов равна нулю для однокомпонентного продукта, а наибольшее значение принимает при $pm_1 = pm_2 = 0,5$ независимо от коэффициентов вариации компонентов по линейной плотности, которое равно

$$Dp_1 = Dp_2 = \frac{CVg_1^2 + CVg_2^2}{16}.$$

Коэффициенты вариации доли компонента линейно убывают пропорционально средней доле самого компонента.

Вывод формул сделан для малых и независимых вариаций линейных плотностей компонентов. Проверка формулы в широком диапазоне вариаций долей компонентов выполнена статистическим моделированием $g_1(t)$, $g_2(t)$ и доли $p_1(t)$ [9]. Результаты оценки коэффициентов вариации доли 1-го компонента при разных средних значениях g_1 , т. е. при разных долях p_1 , приведены на рис. 1 и в табл. 1 и 2. Графики показывают, что формула дает хорошее совпадение с результатами моделирования на всем диапазоне доли компонента. Для удобства вычислений и сравнения результатов использована величина

$$Q_{1} = \frac{CVp_{1}}{CVg_{1}} = pm_{2}\sqrt{1 + \left(\frac{CVg_{2}}{CVg_{1}}\right)^{2}}.$$
 (3)

Величину Q_1 называют вариационным отношением и используют для отображения относительных вариаций двух или нескольких случайных переменных [10]. Результаты, представленные в табл. 1, получены расчетами и моделированием, которые проводились при $CVg_1 = CVg_2 = 10$ %. Объемы выборок для массивов значений $g_1(t)$ и $g_2(t)$ при моделировании $N = 10^6$, что позволило понизить разброс оценок до несущественной величины. В табл. 2 представлены результаты расчетов и статистического моделирования зависимости вариационного отношения от коэффициента вариации линейной плотности второго компонента.

Результаты получены при равных средних долях компонентов в ленте $pm_1 = pm_2 = 0,5$. Коэффициент вариации по линейной плотности первого компонента был постоянным и равным $CVg_1 = 10$ %. Коэффициент вариации по линейной плотности второго компонента варьировался в пределах от нуля до 100 %. Нулевое или близкое к нему значение коэффициента вариации по линейной плотности компонента реализуется на практике, если этим компонентом являются элементарные нити химических волокон. Коэффициент вариации, равный 100 %, соответствует так называемой идеальной ленте. Она построена из распределенных случайным образом по ее длине прямолинейных волокон одинаковой конечной длины [1, 3].

Рис. 1. Зависимость коэффициента вариации доли 1-го компонента от среднего значения g1: сплошная линия – расчет по формуле (2), маркеры – результаты моделирования доли 1-го компонента двухкомпонентного продукта

Таблица 1

Сравнение результатов статистического моделирования с расчетами по формуле (3) для малых вариаций

<i>pm</i> ₂	0,01	0,1	0,3	0,5	0,7	0,9	0,99
<i>Q</i> ₁ по формуле (3)	0,014	0,141	0,424	0,707	0,990	1,272	1,400
Q_1 по моделированию	0,014	0,144	0,428	0,711	0,997	1,288	1,422
Таблица 2							аблица 2

Сравнение результатов статистического моделирования с расчетами по формуле (3) для малых вариаций

CVg ₂	0 %	10 %	30 %	50 %	70 %	90 %	100 %
<i>Q</i> ₁ по формуле (3)	0,500	0,707	1,581	2,549	3,535	4,527	5,024
Q_1 по моделированию	0,505	0,710	1,676	2,699	3,253	3,573	3,700

Другая важная характеристика неровноты – автокорреляционная функция (АКФ). Аналитически получить связь между АКФ $g_1(t)$, $g_2(t)$ и АКФ $p_1(t)$ продукта весьма не просто. Поэтому был использован метод статистической компьютерной имитации. Моделями $g_1(t)$ и $g_2(t)$ являлись авторегрессионные преобразования 2-го порядка дискретного белого шума $x_1(t)$ и $x_2(t)$:

$$g_{1}^{0}(t) = x_{1}(t) - 0.9g_{j}^{0}(t-1) + 0.3g_{1}^{0}(t-2),$$

$$g_{1}(t) = pm_{1}Mg + g_{1}^{0}(t);$$

$$g_{2}^{0}(t) = x_{2}(t) + 0.9g_{2}^{0}(t-1) - 0.1g_{2}^{0}(t-2),$$

$$g_{2}(t) = pm_{2}Mg + g_{2}^{0}(t).$$

В этих формулах индексы 1, 2 нумеруют компоненты; t = 1, ..., 1000 - дискрета переменной времени; pm_1 и $pm_2 = 1 - pm_1 -$ доли компонентов в продукте со средней линейной плотностью Mg. Коэффициенты авторегрессий подбирались в соответствии с рекомендациями [9] так, чтобы АКФ 1-го компонента содержала ко-

Рис. 2. Автокорреляционные функции линейной плотности компонентов

Стационарную неровноту линейной плотности волокнистой ленты обычно разделяют на случайную и периодическую составляющие [4, 12]: лебательную составляющую, а 2-го компонента была монотонно убывающей [11]. Графики АКФ линейной плотности компонентов показаны на рис. 2. На рис. 3 показаны АКФ для доли $p_1(t)$ на всем диапазоне значений средней доли 1-го компонента. На графиках видно, как с уменьшением доли 1-го компонента в монотонной АКФ нарастает колебательная составляющая в АКФ доли компонента. При этом колебательная составляющая возникает и проявляется в основном на коротких интервалах корреляции и отсутствует у АКФ линейной плотности 2-го компонента.

Наблюдаемый эффект весьма необычен и приводит к выводу, что наличие волн по линейной плотности в одном из компонентов может быть причиной возникновения коротковолновой неровноты по доле компонентов, т. е. по смесовому составу в смешанном одномерном продукте. Эта коротковолновая неровнота по доле компонентов может проявиться на последующих переходах прядильного производства и в готовом продукте.

Рис. 3. Автокорреляционная функция доли 1-го компонента в продукте

$$g(x) = r(x) + c(x),$$

$$0 \le x \le Im$$

В этой формуле g(x) – стационарная случайная функция, описывающая величину линейной плотности по длине ленты; x – коорди-

ната по длине ленты; Lm – длина рассматриваемого отрезка ленты; r(x) и c(x) – соответственно случайная и периодическая составляющие неровноты. Двухкомпонентная лента является результатом сложения по меньшей мере двух волокнистых потоков:

$$g(x) = g_1(x) + g_2(x) =$$

= $r_1(x) + c_1(x) + r_2(x) + c_2(x),$
 $0 \le x \le Lm.$

Доли первого и второго компонентов:

$$p_1(x) = g_1(x)/g(x),$$

 $p_2(x) = 1 - p_1(x)$

и являются случайными функциями, нелинейно зависящими от $g_1(x)$ и $g_2(x)$. Для анализа зависимости частотного спектра неровноты по доле компонента от спектральных свойств неровноты по линейной плотности используем модельный пример. Предположим, что случайные составляющие $r_1(x)$ и $r_2(x)$ – это белый шум с нулевым средним и одинаковыми среднеквадратическими отклонениями $CVg_1 = CVg_2 = 10$ %. Средняя линейная плотность ленты m = 5000 текс. Линейная плотность каждого из компонентов содержит гармоническую составляющую с одинаковыми относительными амплитудами a = 0,2и длинами волн $L_1 = 5$ м и $L_2 = 9$ м

$$c_{1,2}(x) = m_{1,2} \left(1 + a \cos\left(\frac{2\pi x}{L_{1,2}} - b_{1,2}\right) \right)$$

В этой формуле средние линейные плотности компонентов m_1 и m_2 равны $m_1 = pm_1 \cdot m$ и $m_2 = pm_2 \cdot m$, где pm_1 и pm_2 – средние доли компонентов в ленте; b_1 и b_2 – смещения фазы гармонических колебаний линейной плотности компонентов. На рис. 4 показаны графики спектральной плотности дисперсии (СПД) для линейной плотности первого компонента $Sg_1(\lambda)$, второго компонента $Sg_2(\lambda)$, смешанной ленты $Sg(\lambda)$ и доли первого компонента $Sp_1(\lambda)$ в зависимости от длины волны λ [1, 9, 10]. Заметим, что СПД доли второго компонента равна $Sp_1(\lambda)$, поскольку случайные функции $p_2(x) = 1 - p_1(x)$. На графиках СПД четко выделяются пики на длинах волн $L_1 = 5$ м и $L_2 = 9$ м гармонических составляющих неровноты компонентов. СПД ленты является суммой СПД компонентов, и в ней наблюдаются оба пика от компонентов. Интенсивности (амплитуды) пиков больше у компонента с большей долей вклада в ленту. В СПД доли компонента $Sp_1(\lambda)$ также присутствуют оба пика на указанных длинах волн, но с меньшими амплитудами.

Приведенные оценки были выполнены для всего диапазона долей компонентов от 0 до 1. Были вычислены максимальные значения СПД $Sgm = \max{Sg(\lambda)}$ и $Spm = \max{Sp_1(\lambda)}$ и длины волн LgMax и LpMax, соответствующие этим максимумам. Результаты моделирования приведены в табл. З. Видно, что максимум СПД приходится на длину волны компонента, чья доля в ленте больше. При *рт*₁ < 0,5 это длина волны второго компонента $L_2 = 9$ м, при $pm_1 > 0.5 - 0.5$ длина волны первого компонента $L_1 = 5$ м. При этом интенсивность максимума СПД наименьшая при равных долях компонентов и симметрично нарастает с увеличением доли любого из компонентов. Наибольший из пиков СПД доли первого (и второго) компонентов может приходиться на длину волны и первого, и второго компонентов. При этом максимум СПД имеет наибольшее значение при равных долях компонентов и убывает до нуля с уменьшением доли любого из компонентов [7, 11]. Этот результат согласуется с формулой (1). Вычислительные эксперименты на модели ленты показали [4, 12], что максимумы СПД Spm могут появляться на пиковой частоте первого или второго компонентов, в зависимости от их совпадения или несовпадения с одним из пиков СПД случайной составляющей компонента.

Максимумы СПД по величине и длине волны не зависят от смещений по фазе b_1 и b_2 между гармоническими составляющими неровноты компонентов. При большой разнице в длинах волн L_1 и L_2 в компонентах в доле компонента устойчиво просматривается пик СПД только на одной длине волны.

Совершенно иначе проявляются гармонические составляющие линейной плотности компонентов в спектре доли компонента при одинаковых длинах волн: $L = L_1 = L_2$. В этом случае принципиально важную роль играет различие в фазе колебаний линейной плотности в каждом из компонентов, поскольку при наличии гармонических колебаний с одинаковыми длинами волн возникает устойчивый эффект «резонанса» между двумя компонентами.

При отсутствии смещения по фазе, т. е. при $\Delta b = b_1 - b_2 = 0$ в СПД $Sp_1(\lambda)$ вообще отсутствует явно выраженный пик, показывающий присутствие гармонической составляющей в изменениях доли компонента в ленте. Наоборот, при $\Delta b \neq 0$ возникают один (при $\Delta b = \pi$, т. е. когда волны в компонентах находятся в противофазе) или два (при $\Delta b \neq 0$ и $\Delta b \neq \pi$) устойчивых пика на основной длине волны L и на длине волны L/2. При этом амплитуды пиковых значений СПД $Sp_1(\lambda)$ при $\lambda = L$ и $\lambda = L/2$ отличаются примерно на два порядка как между собой, так и от общего уровня значений СПД.

В табл. 4 приведены значения первых двух максимумов Spm_1 и Spm_2 для $L = L_1 = L_2 = 8$ м при $\Delta b = \pi$ и $\pi/2$ для разных pm_1 . Из представленных данных следует, что при одинаковой длине волны линейной плотности в компонента может отсутствовать, если оба компонента складываются в ленте синфазно. Если же компонен-

ты, наоборот, складываются в противофазе, то периодическая неровнота по доле компонента может достигать весьма больших амплитуд, причем величина этих амплитуд зависит от средней доли компонента.

При одинаковых долях амплитуда максимальна. При неодинаковых долях в неровноте по доле возникают две волны: одна имеет ту же длину, что и волна в неровноте по линейной плотности в компонентах, а другая длина волны в два раза меньше (L = 4 м).

Рис. 4. СПД линейной плотности компонентов $Sg_1(\lambda)$, $Sg_2(\lambda)$, ленты $Sg(\lambda)$ и доли компонента $Sp_1(\lambda)$ в ленте

Таблица 3

Максимумы спектральной плотности дисперсии линейной плотности и доли компонента и соответствующие им длины волн в зависимости от средней доли компонента в ленте

pm_1	<i>LgMax</i> , м	Sgmax	<i>LpMax</i> , м	Spm
0	8,983	7,257 e+10	Inf	0
0,1	8,983	6,025 e+10	8,982	674,0
0,2	8,983	4,198 e+10	4,995	1877,8
0,3	8,983	3,507 e+10	4,995	3242,2
0,4	8,983	2,423 e+10	8,982	4249,2
0,5	4,995	1,781 e+10	4,995	4697,3
0,6	4,995	2,685 e+10	4,995	4458,5
0,7	4,995	3,597 e+10	4,995	3376,6
0,8	4,995	4,503 e+10	4,995	1919,4
0,9	4,995	5,680 e+10	4,995	613,9
1,0	4,995	7,100 e+10	Inf	0

pm_1	$Spm_1, \Delta b = \pi$	$Spm_2, \Delta b = \pi$	$Spm_1, \Delta b = \pi/2$	$Spm_2, \Delta b = \pi/2$
0,01	586,2	6,231	288,4	3,015
0,10	4,687 e + 4	324,5	2,301 e + 4	190,2
0,30	2,423 e + 5	348,6	1,211 e + 5	761,2
0,50	3,362 e + 5	-	1,693 e + 5	916,2
0,70	2,412 e + 5	437,0	1,209 e + 5	720,0
0,90	4,671 e + 4	320,1	2,305 e + 4	203,8
0,99	581,7	6,116	284,1	3,047

Два главных максимума СПД доли компонента в зависимости от средней доли компонента в ленте

При различии в фазах волн компонентов, равном четверти периода ($\Delta b = \pi/2$), при любых долях компонентов в неровноте по доле присутствуют две волны с длинами *L* и *L*/2. Первая волна имеет большую амплитуду (интенсивность дисперсии), отличающуюся на 2 порядка от второй волны. Амплитуды обеих волн сильно зависят от средней доли компонента, достигая максимума при равных долях компонентов.

выводы

1. Установлено, что коэффициент вариации доли компонента по длине одномерного продукта нарастает пропорционально убыванию его доли, а дисперсия доли компонентов достигает максимума при одинаковой доле компонентов независимо от неровноты по линейной плотности. Формулы, полученные для этих оценок, пригодны в широком диапазоне неровноты по линейной плотности компонентов.

Таблица 4

2. Оценка АКФ доли компонента имеет специфическую форму, зависящую от формы АКФ линейной плотности компонентов, и прогнозирует возможность коротковолновой неровноты по доле компонентов.

3. Периодическая неровнота линейной плотности компонентов по-разному проявляется в СПД неровноты по доле компонентов в продукте и сложным образом зависит от доли компонента, амплитуды периодической неровноты, соотношения длин волн в компонентах и разности фаз.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Севостьянов А. Г. Методы исследования неровноты продуктов прядения: (Характеристики случайных функций и их применение). М. : Ростехиздат, 1962. 386 с. : ил.
- 2. Севостьянов А. Г. Исследование неровноты, возникающей при смешивании текстильных волокон и при вытягивании продуктов прядения : дис. ... д-ра техн. наук. М., 1960. 544 с.
- 3. Севостьянов П. А. Методы исследования и моделирования неровноты продуктов прядения : монография. – М. : РГУ им. А. Н. Косыгина, 2019. – 241 с.
- Компьютерное моделирование длины и тонины волокон шерсти в топсе и ленте на основе данных натурных экспериментов / П. А. Севостьянов, К. В. Ордов и др. // Известия вузов. Технология текстильной промышленности. – 2015. – № 6. – С. 185–189.
- 5. Громов С. С., Севостьянов П. А. Анализ динамики долевого состава двухкомпонентного волокнистого материала в процессе кардочесания // Известия вузов. Технология текстильной промышленности. – 2009. – № 6(321). – С. 109–112.
- 6. Горский Д. А., Севостьянов П. А. Оценка эффективности управления кипным питателем с верхним отбором волокна методами компьютерного моделирования // Известия вузов. Технология текстильной промышленности. 2008. № 3(308). С. 124–127.
- 7. Добринская Т. А., Севостьянов П. А. Сравнение эффективности смешивания смешивающими и дозирующими устройствами // Известия вузов. Технология текстильной промышленности. 2000. № 3. С. 39–43.
- 8. Севостьянов П. А. Исследование сложения волокнистых потоков методом статистического моделирования // Известия вузов. Технология текстильной промышленности. – 1979. – № 5. – С. 40–44.
- 9. Севостьянов П. А., Ордов К. В. Основы анализа и моделирования данных в технике и экономике : монография. М. : Тисо Принт, 2015. 412 с.

- 10. Смирнов Н. В., Дунин-Барковский И. В. Курс теории вероятностей и математической статистики для технических приложений : для втузов. 3-е изд., стер. М. : Наука, 1969. 511 с.
- 11. Сергиенко А. Б. Цифровая обработка сигналов : учеб. пособие. 3-е изд. СПб. : БХВ-Петербург, 2011. 768 с. : ил.
- 12. Sevostyanov P. A., Lebedeva V. I., Shibaeva E. O. The Sliding Dispersion Method for Detecting Local Unevenness in Fibres // Fibre Chemistry. 2009. Vol. 41, № 4. C. 271–275.

REFERENCES

- 1. Sevosť yanov A. G. Metody issledovaniya nerovnoty produktov pryadeniya: (Harakteristiki sluchajnyh funkcij i ih primenenie). M. : Rostekhizdat, 1962. 386 s. : il.
- 2. Sevosť yanov A. G. Issledovanie nerovnoty, voznikayushchej pri smeshivanii tekstil nyh volokon i pri vytyagivanii produktov pryadeniya : dis. ... d-ra tekhn. nauk. M., 1960. 544 s.
- 3. Sevosť yanov P. A. Metody issledovaniya i modelirovaniya nerovnoty produktov pryadeniya : monografiya. M. : RGU im. A. N. Kosygina, 2019. 241 s.
- 4. Komp'yuternoe modelirovanie dliny i toniny volokon shersti v topse i lente na osnove dannyh naturnyh eksperimentov / P. A. Sevost'yanov, K. V. Ordov i dr. // Izvestiya vuzov. Tekhnologiya tekstil'noj promyshlennosti. 2015. N 6. S. 185–189.
- Gromov S. S., Sevost'yanov P. A. Analiz dinamiki dolevogo sostava dvuhkomponentnogo voloknistogo materiala v processe kardochesaniya // Izvestiya vuzov. Tekhnologiya tekstil'noj promyshlennosti. – 2009. – N 6(321). – S. 109–112.
- Gorskij D. A., Sevost'yanov P. A. Ocenka effektivnosti upravleniya kipnym pitatelem s verhnim otborom volokna metodami komp'yuternogo modelirovaniya // Izvestiya vuzov. Tekhnologiya tekstil'noj promyshlennosti. – 2008. – N 3(308). – S. 124–127.
- Dobrinskaya T. A., Sevost'yanov P. A. Sravnenie effektivnosti smeshivaniya smeshivayushchimi i doziruyushchimi ustrojstvami // Izvestiya vuzov. Tekhnologiya tekstil'noj promyshlennosti. – 2000. – N 3. – S. 39–43.
- 8. Sevosť yanov P. A. Issledovanie slozheniya voloknistyh potokov metodom statisticheskogo modelirovaniya // Izvestiya vuzov. Tekhnologiya tekstil'noj promyshlennosti. – 1979. – N 5. – S. 40–44.
- 9. Sevosťyanov P. A., Ordov K. V. Osnovy analiza i modelirovaniya dannyh v tekhnike i ekonomike : monografiya. M. : Tiso Print, 2015. 412 s.
- 10.Smirnov N. V., Dunin-Barkovskij I. V. Kurs teorii veroyatnostej i matematicheskoj statistiki dlya tekhnicheskih prilozhenij : dlya vtuzov. 3-e izd., ster. M. : Nauka, 1969. 511 s.
- 11. Sergienko A. B. Cifrovaya obrabotka signalov : ucheb. posobie. 3-e izd. SPb. : BHV-Peterburg, 2011. 768 s. : il.
- 12. Sevostyanov P. A., Lebedeva V. I., Shibaeva E. O. The Sliding Dispersion Method for Detecting Local Unevenness in Fibres // Fibre Chemistry. 2009. Vol. 41, N 4. S. 271–275.